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Some results of mathematical character concerning the theory of intermolecular interactions
and the BSSE problem are presented. It is shown that the concept of complete basis set may
be introduced for intermolecular potential surfaces only by considering explicitly the limit-
ing process in which the basis sets of both monomers approach completeness simulta-
neously. That does not lead to any overcompleteness problem if we do not postulate the
existence of two complete basis sets from the outset. The intimate connection between the
BSSE and the differences of some biorthogonal integrals and their “original” counterparts
is also discussed. The operator of BSSE is given in terms of such differences. It is shown that
in a special case, when only the overlap of the occupied orbitals is considered, the
“bi-expectation” value of the energy coincides with the conventional expectation value for
the single determinant wave function built up of the unperturbed orbitals of the individual
monomers. It is discussed, by using a model of the biorthogonal perturbation theory, why
the conceptually fully different a priori (CHA) and a posteriori (CP) schemes of BSSE correc-
tion usually give very close numerical results. (The necessary biorthogonal perturbation for-
malism is developed in the Appendices.) The results give justification for the additivity
assumptions inherent in the CP method.
Keywords: Quantum chemistry; Hamiltonian; Basis set superposition error; Wave function;
Biortogonal Hylleraas functional.

The present author has been involved for some decades in the theory of
intermolecular interactions (one of the favorable fields of Prof. Zahradník).
During that time a number of interesting results have been obtained which,
however, remained unpublished as they did not fit well in the papers we
had actually written. The aim of this note is to collect some of these minor
results and present them in this special issue.
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Our considerations will be, in that or another manner, related to the so
called “basis set superposition error” (BSSE) problem. BSSE is not a physical
phenomenon, but a mathematical effect of using finite – hence incomplete
– basis sets. If one calculates the interaction energy between two weakly
bonded molecules (“subsystems” or “monomers”) A and B in the seemingly
most straightforward manner, i.e., as the difference between the energy of
the supersystem (“dimer” or “supermolecule”) AB and the sum of the free
monomer energies:

∆E E E EAB
uncorr

AB A BAB A B= − −( ) ( ) ( ) (1)

then too deep minima are often obtained, especially if small basis sets are
applied. Hereafter the subscripts denote the systems calculated and the ba-
sis set applied in a calculation is indicated in parentheses. (In the present
paper all the basis functions are assumed to belong either to monomer A or
monomer B, as is the case in most practical calculations.) As it can be seen,
in this simplest “uncorrected” calculation every (sub)system is calculated by
using its own basis set. BSSE appears as the consequence of the fact that the
supermolecule is calculated by using a larger basis than that of the mono-
mers, and the appearance of the partner monomer basis orbitals leads to an
energetically somewhat better description of the internal electronic struc-
ture of the individual monomers, i.e., to some lowering of EAB(AB) which is
out of balance with respect of the free monomer energies EA(A) and EB(B)
calculated by using only the monomer basis sets. The basic method of cor-
recting BSSE is the classical (and ingenious) “counterpoise correction” (CP)
scheme of Boys and Bernardi1 (BB), applied even somewhat before by Ross
and Jansen2 in an actual application. In this scheme the interaction energy
between two molecules A and B is determined by using the union of the
basis sets (“dimer” or “supermolecule” basis) for calculating every quantity:

∆E E E EAB
CP

AB A BAB AB AB= − −( ) ( ) ( ) . (2)

It may be noted that Boys and Bernardi1 devised their scheme considering
it explicitly as a method for “error cancellation”, which “does not so much
solve the various difficulties (...) as much as arrange that they do not occur
in explicit form”. Later some researchers assumed the BB scheme to be
“exact”, which we cannot accept (see below), although we definitely do not
wish to question the importance and usefulness of this method.
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The BB scheme is an a posteriori correction scheme as it uses the super-
molecule energy “spoiled” by BSSE and corrects it by adapting the mono-
mer energies to the situation “to be occupied” in the complex. The present
author has introduced the a priori method of excluding BSSE by using the
“Chemical Hamiltonian Approach” (CHA), in which the free monomer
energies EA(A), EB(B) are not manipulated, but the Hamiltonian of the in-
teracting system is analyzed as to identify and exclude the terms causing
BSSE. (As most important references we give refs3–7.) As BSSE is not a physi-
cal phenomenon, it does not correspond to any Hermitian operator, and
the BSSE-free CHA Hamiltonian is non-Hermitian. This non-Hermitian
Hamiltonian is used for calculating the BSSE-free wave functions, while the
energy corresponding to that wave function is calculated as a conventional
expectation value with the usual (Hermitian) Hamiltonian of the system
(“CHA with conventional energy”, CHA/CE method).

An interesting and very rewarding observation is that the CP and CHA
methods usually give very close numerical results at any level of theory.
Moreover, it is the general observation that when the basis set improves,
the difference between the results of these BSSE-corrected methods dimin-
ishes much faster than BSSE disappears from the uncorrected interaction
energies. Thus the results obtained by using these two, conceptually quite
different schemes corroborate each other to a very great extent. Despite
some theoretical consideration already presented8,9, this success still needs
some more detailed explanations.

APPROACHING THE COMPLETE BASIS LIMIT

We cannot accept the most common argument used in favor of the as-
sumption that the CP correction scheme is ideal or even “exact”, just be-
cause “everything is computed in the same basis”. In fact, this recipe
can not be used to account for the changes of the monomer geometries
(“monomer relaxation”) taking place during the intermolecular interac-
tions. It has been found that the shape of the CP-corrected potential energy
surfaces (gradients of the CP-corrected energy, differences of conformer en-
ergies, etc.) need to be computed by considering the monomer distortions
in the free monomer (and not dimer) basis sets10,11. One indeed must com-
pute the monomer relaxation by using the monomer basis, because in the
dimer basis the relaxation energy becomes mathematically meaningless: it
becomes ill-defined and one obtains different results for the same configu-
ration depending on what cross-section of the potential surface is studied11.
Therefore monomer relaxation may be computed in the free monomer
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basis only. This means that the interaction energy in the most general case
should be calculated as10,11

∆E E E E E E EAB
CP

AB A
R

B
R

A
R

A
0

B
RAB AB AB A A B= − − + − +( ) ( ) ( ) ( ) ( ) ( ) ( )− EB

0 B (3)

where the superscripts R indicate the monomer geometry within the com-
plex and subscript 0 that of the free monomer. The first 3 terms give the
CP-corrected interaction energy between the monomers in their actual con-
figurations within the complex, while the remaining ones account for the
energy that is necessary to distort the monomers. Geometry optimization
of complexes, based on this algorithm (as implemented by P. Salvador) is
available in the Gaussian program system. By finding the minimum of the
expression on the right-hand side of Eq. (3) one can determine the geome-
try of the complex corresponding to the deepest CP-corrected interaction
energy.

One must also keep in mind that calculating the monomers in the dimer
basis set may lead to quite non-physical distortions of the wave functions –
e.g., free atoms acquire a non-zero dipole moment. Therefore, they are not
really adequate as starting wave functions for calculating the actual interac-
tions; instead, they should only be considered as auxiliary entities used to
estimate the actual BSSE content of the supermolecule energy.

A more challenging, abstract argument used to support the assumption of
the CP method being “exact” is the following. (Monomer relaxation is not
considered in that case.) Let us assume that neither of monomers A and B
have a complete basis, but the union of these basis sets (the basis “AB”) is
complete. Then all the energies entering Eq. (2) are exact and the same
holds for the energy difference calculated by its use. This is obviously true
for a single point for the (fictitious) case considered. However, we are usu-
ally interested in full potential curves. Changing the intersystem distance,
sooner or later the basis “AB” ceases to be complete as the basis orbitals will
be shifted; it definitely cannot be complete in the limit of infinite separa-
tion, where one has two free monomers. At infinite distance one should get
the sum of the monomer energies calculated in two independent monomer
calculations – this is a must in any meaningful theory. But neither of
monomers carries a complete basis, so the energies obtained in the limit of
infinite separation cannot be exact. This means that – when computing
whole potential curves – one can approach the limit of exact calculations
only if the basis sets on both monomers become complete simultaneously.
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Thus, it is an interesting mathematical problem whether one can con-
sider the limiting case in which the basis sets of both monomers approach
completeness without meeting the problem of overcompleteness. Obvi-
ously, if we postulate from the outset that both monomers carry an infinite
and complete basis set, then we have overcompleteness. But one may avoid
any overcompleteness problem by constructing properly the limiting pro-
cess leading to complete basis sets on each monomer.

To illustrate the idea, let us consider a simple mathematical problem, in
which we have two unit vectors in a plane, r1

0 and r2
0 , which approach each

other. The normalized sum and difference of them determines the direction
of two orthogonal vectors spanning the plane. These two vectors exist even
in the limit r1

0 → r2
0 , so the two-dimensionality of the manifold (plane) is

conserved even in this limit. Only if we start by assuming r1
0 ≡ r2

0 , the plane
will degenerate to a line and we will have overcompleteness. As another
analogy, we recall the known fact that the limit of the normalized differ-
ence of two s orbitals with the same exponent, approaching each other, is a
p orbital with the same exponent.

Thus, we think that a mathematically correct study of approaching the
complete basis limit should not be based on the assumption that we do al-
ready have a complete basis distributed “half here – half there”, but rather
on investigating the process in which the basis sets on both monomers in-
crease and in the limit become complete. That is a meaningful task, as we
may indeed study the monomers with larger and larger basis sets, while we
will never have in practice a situation in which basis “AB” is already com-
plete.

The problem may be dealt by making use of Löwdin’s “pairing theo-
rem”12–14. Let us consider two sets of basis functions ai and bi put at some
distance with respect to each other. With no loss of generality one may as-
sume that they form two orthonormal sets, i.e.,

〈 〉 = 〈 〉 =a a b bi j i j ij| | .δ (4)

According to Löwdin’s pairing theorem, it is always possible to subject the
sets {ai} and {bi} to separate unitary transformations to ensure that the
interset overlaps differ from zero only in pairs:

〈 〉 =a bi j i ij| .λ δ (5)

As the number of functions in sets {ai} and {bj} increases, and they approach
completeness, the λi values will tend to unity15, always remaining (at least
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infinitesimally) smaller than unity. They still define a two-dimensional sub-
space even when the limiting process is performed, in which both sets tend
to completeness, and the λi-s tend to 1. (All the λi values are strictly equal
to 1, so all ai = bi, only when the basis sets are already strictly complete, but
not when approaching completeness.) That means that increasing the basis
sets on both monomers in a manner that they approach completeness
simultaneously will not lead to any overcompleteness problem (in a strict
mathematical sense, of course). Here we are, in fact, faced with a delicate
problem of infinities, like that the cardinality of the even numbers is equal
to that of all the natural ones. So we may conclude that overcompleteness
appears only if we start our considerations by assuming that we already
have two complete sets – one on each monomer – but one may consider
the simultaneous convergence of the both molecular bases to the basis set
limit without entering a mathematical trouble.

BIORTHOGONAL INTEGRALS AND THE BSSE PROBLEM

By using second quantization formalism, the Born–Oppenheimer Hamil-
tonian $H of a molecule can be written in terms of the integrals over the
orthonormalized (occupied and virtual) molecular spin-orbitals ϕ i and
the creation and annihilation operators $ϕ i

+ , $ϕ i
− corresponding to them (we

use Longuet–Higgins’s16 notations indicating explicitly to what orbital the
creation/annihilation operators do refer) as

$ | $| $ $ [ |
, , ,

H
Z Z

R
ha b

aba b
i j

i j
i j i j

i j

= + 〈 〉 +
<

+ −∑ ∑ ϕ ϕ ϕ ϕ ϕ ϕ1
2

k l
k l i j l k

,

] $ $ $ $∑ + + − −ϕ ϕ ϕ ϕ ϕ ϕ (6)

where the first term describes nuclear–nuclear repulsion, $h is the one-
electron Hamiltonian and the convention [12|12] is used for the two-
electron integrals. (All integrals include summations over the spins.)

If one considers two interacting molecules A and B and describes the
supermolecule AB by using the union of the two molecular basis sets, then
a number of complications arise because of the intermolecular overlap:

〈 〉 = ≠ϕ ϕ δi j ij ijS| (7)

if i and j refer to different subsystems. (Intrasubsystem orthogonality is
conserved, of course.) In the paper3 the present author proposed to keep
using in such situations the creation operators $ϕ i

+ creating electrons on the
(non-orthogonal) basis spin-orbitals and defined the respective “effective”
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annihilation operators ~$ϕ i
− . The terms “effective” means that the set of oper-

ators obeys the fermion anticommutation rules

{ $ ~$ $ ~$ ~$ $ϕ ;ϕ } = ϕ ϕ ϕ ϕ δi j i j j i ij
+ − + − − ++ = (8)

thus operator ~$ϕ i
− behaves as the annihilation operator for the MO ϕi, but it

is not the adjoint of the creation operator $ϕ i
+ creating an electron in that

spin-orbital; in fact it can be defined as the adjoint of the creation operator
for the biorthogonal counterpart to ϕi; this fact is indicated by the tilde in
its notation:

~ϕ ϕi ji j
j

S= −∑ 1 (9)

where S ji
−1 is a short-hand notation for an element of the inverse overlap

matrix. Alternatively, one can consider operator ~$ϕ j
− as an abstract mathe-

matical entity defined by the fermion anticommutation rule (8).
There is a number of ways of writing down the overall Hamiltonian in

this formalism; a very compact one is17

$ ~ | $| $ ~$ [~ ~ |
,

H
Z Z

R
ha b

aba b
i j

i j
i j i j= + 〈 〉 +

<

+ −∑ ∑ ϕ ϕ ϕ ϕ ϕ ϕ1
2

i j k l
k l i j l k

, , ,

] $ $ ~$ ~$ .∑ + + − −ϕ ϕ ϕ ϕ ϕ ϕ (10)

Of course, now all subscripts run over both subsystems A and B.
Besides using “effective” annihilation operators, this form of the Hamil-

tonian differs from Eq. (6), which is valid in the case of an orthonormal
basis, by using the biorthogonal orbitals (9) in the “bra” parts of the one-
and two-electron integrals. That difference of the integrals, however, is an
important one, and is intimately related to the BSSE problem.

It may be noted for completeness, that the biorthogonal orbitals, how-
ever, do not appear in final expressions of the energy expectation values. In
fact, one has3 the equality for the expectation values of the operator string
occurring in the one-electron part of the Hamiltonian: 〈 〉+ −$ ~$ϕ ϕi j = (PS)ji,
where P is the usual finite basis “density matrix” (in terms of spin-orbitals).
Then the overlap matrix S in this expectation value and the inverse over-
lap matrix in the definition of the biorthogonal orbitals just cancel. Simi-
larly, for the two-electron strings one has3 in the single-determinant case
〈 〉+ + − −$ $ ~$ ~$ϕ ϕ ϕ ϕi j l k = (PS)ki(PS)lj – (PS)kj(PS)li, again canceling the biorthogonality.
(Of course, analogous expressions should also hold in the correlated case,
but in the terms of the respective second-order density matrix.)
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One can separate the terms in the Hamiltonian (10), all subscripts of
which belong to monomer A, and get an operator $ ′H A which in some sense
describes monomer A in the overlapping basis of the supersystem

$ ~ | $ | $

( , )
,

( , )

′ = + 〈 〉
<

∈ ∈

∑ ∑H
Z Z

R
ha b

aba b
a b

i j
i j

i j

iA

A

A

A

ϕ ϕ ϕ + −

∈

+ ++ ∑~$ [~ ~ | ] $ $ ~
, , ,

( , , , )

ϕ ϕ ϕ ϕ ϕ ϕ ϕj i j
i j k l

i j k l

k l i j
1
2

A

$ ~$ϕ ϕl k
− − (11)

where $hA is the one-electron Hamiltonian corresponding to monomer A:

$ .h
Z
r

a

a
A

AA

= −
∈
∑1

2 ∆ (12)

Obviously, if one considers the full CI wave function of monomer A,
which is exact in the finite basis of the free monomer, it will not be an
eigenfunction of the operator $ ′H A , written down in terms of the extended
AB basis, because $ ′H A contains the biorthogonal integrals. That reflects the
fact that the extension of the basis set changes the “free” monomer prob-
lem – owing to the variation principle, it will lower the monomer ground
state energy even within the complex. This is the cause of BSSE. (The use of
the “effective” annihilation operators does not explicitly manifest itself, be-
cause they have been constructed to ensure that they behave in the super-
molecule basis exactly in the manner as the original annihilation operators
do in the original monomer basis.)

When introducing the CHA 3, we have performed a special analysis of the
“ket functions” entering the one- and two-electron integrals, to exclude the
effects giving rise to BSSE. (For a first-quantized discussion, we refer to ref.18)
For that reason, it was requested that the expansion of every function of
intramonomer character should be restricted to the respective intramono-
mer basis, i.e., one should replace them by their projection on the “own”
basis

$ $ $ ( )

( ) ( ) $ ( ) $ ( )

h P h i

r
P P

r

i i

i j

A A A

A A

Aϕ ϕ

ϕ ϕ

⇒ ∈

⇒1
1 2 1 2

1

12 12

ϕ ϕi j i j( ) ( ) ( , )1 2 ∈ A
(13)

where the projection operator $PA can be written in the “bra-ket” notations
simply as:

$ | .P | i
i

iA
A

= 〉〈
∈
∑ ϕ ϕ (14)
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Applying these substitutions, we arrived after lengthy manipulations
to some “effective” monomer Hamiltonians (In the original paper all the
expressions were much more complicated because non-orthogonality of
the basis orbitals was admitted also within the individual monomers, and
the inverse overlap matrices were not “compressed” into the biorthogonal
“ket” vectors.)

$ | $ | $

( , )
,

( , )

H
Z Z

R
ha b

aba b
a b

i j
i j

i j

A
eff

A

A

A

= + 〈 〉
<

∈ ∈

∑ ∑ ϕ ϕ ϕ i j i j
i j k l

i j k l

k l i j
+ −

∈

+ ++ ∑~$ [ | ] $ $ ~$
, , ,

( , , , )

ϕ ϕ ϕ ϕ ϕ ϕ ϕ1
2

A

ϕ ϕl k
− −~$ . (15)

Operators $H A
eff have the special property, that they act on a monomer

wave function in the full supermolecule basis exactly in the same way as
the original monomer Hamiltonian does in the monomer basis. As a conse-
quence, if one considers a supermolecule wave function which is built up as
an appropriately antisymmetrized product of the exact eigenfunctions (in
the finite basis, i.e. full CI, sense) of the individual monomers, then this
wave function is an eigenfunction of the sum $ $H HA

eff
B
eff+ , and the sum of

eigenvalues is the sum of the free monomer energies3. We use the term
“effective” monomer Hamiltonians because, owing to the intermolecular
overlap, these properties are achieved at the expense that operators $H A

eff are
non-Hermitian: they contain the “effective” annihilation operators ~$ϕ i

− .
As it is easy to see, operator $H A

eff differs from $ ′H A by replacing all the bi-
orthogonal functions in the one- and two-electron integrals with the re-
spective “original” ones. (As operator $ ′H A “as such” has not actually been
defined previously, this juxtaposition has not yet been explicitly made.) We
note that the biorthogonal integrals remain in terms of the Hamiltonian
describing true intermolecular interactions. The differences between the
functions on the two sides of Eqs (13) need not be neglected – they are col-
lected in a special term of the Hamiltonian, responsible for BSSE.

Thus the BSSE effects have an intimate relation with the differences of
the biorthogonal and “original” values of those (both intramonomer and
intermonomer) one- and two-electron integrals, in which the function in
“ket” can be assigned an intramonomer character. It may be worthwhile
to look on this point more in detail. Let us consider, for instance, the differ-
ence of integrals 〈 〉 − 〈 〉~ | $ | | $ |ϕ ϕ ϕ ϕi j i jh hA A , for which j ∈ A, and introduce a
resolution of identity as 1 1= + −$ ( $ )P PA A , in accord with the fact that the
function $ |h jA ϕ has an intramonomer character of monomer A. Then we
may write
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〈 〉 − 〈 〉 = 〈 + − 〉 − 〈~ | $ | | $ | ~ |( $ $ ) $ |ϕ ϕ ϕ ϕ ϕ ϕi j i j i jh h P P hA A A A A1 ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

i j

i j i j i

h

P h h P

| $ |

~ | $ $ | | $ | ~ |( $

A

A A A A

〉

= 〈 〉 − 〈 〉 + 〈 −1 ) $ |

~ | | $ | | $ | ~

h

h h

j

i k k
k

j i j i

A

A
A A|

ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ

〉

= 〈 〉〈 〉 − 〈 〉 + 〈
∈
∑ |( $ ) $ |

| $ | | $ | ~

1 − 〉

= 〈 〉 − 〈 〉 + 〈
∈
∑

P h

h h

j

ik k
k

j i j

A A

A
A A

ϕ

δ ϕ ϕ ϕ ϕ ϕ i j

i j

P h

P h

|( $ ) $ |

~ |( $ ) $ |

1

1

− 〉

= 〈 − 〉

A A

A A

ϕ

ϕ ϕ (16)

which would vanish if the function $ |h jA ϕ 〉 could exactly be expanded with
the aid of the basis orbitals assigned to monomer A – thus it is associated
with the BSSE effects. Analogous considerations apply to the difference of
those two-electron integrals [~ ~ | ] [ | ]ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕi j k l i j k l− , too, for which the
spin-orbitals ϕk and ϕl are centered on the same monomer. (It is to be
stressed that the difference between the biorthogonal and “ordinary”
integrals does not correspond to a BSSE effect in the cases when the “ket”
does not have a well-defined intramonomer character – i.e., for integrals
like 〈 〉ϕ ϕi

Z
r j

a

a
| | when a ∈ A; j ∈ B or [ϕiϕj|ϕkϕl] when k ∈ A; l ∈ B.)

In full accord with these considerations, the explicit expression Eq. (70)
in ref.3, giving the term of the Hamiltonian that is responsible for BSSE, can
be transformed in the present notations to the very compact form

( )$ ~ | $ | | $ | $ ~$

~ $

B h h

|

i j i j
ij

i j

i

= 〈 〉 − 〈 〉 +

+ 〈

∑∑
∈

+ −ϕ ϕ ϕ ϕ ϕ ϕ

ϕ

A A
A

( )h | |h |j i j
ij

i j

i j k l

B B
B

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

〉 − 〈 〉 +

+ −

∑∑
∈

+ −$ $ ~$

[~ ~ | ]( )[ | ] $ $ ~$ ~$

[~ ~ |

,

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

i j k l
i,jk l

i j l k

i j

∑∑
∈

+ + − − +

+

A

( )k l i j k l
i,jk l

i j l kϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ] [ | ] $ $ ~$ ~$ .
,

−∑∑
∈

+ + − −

B

(17)

(Among other steps, the intramonomer overlap matrix considered in ref.3

was substituted a unit matrix and a number of restrictions on the summa-
tions were be omitted, as they correspond to exclusion of terms which
would vanish anyway.)
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WHEN THE EXPECTATION AND “BI-EXPECTATION” VALUES COINCIDE

Let us consider a determinant wave function built up of non-orthogonal
spin-orbitals ϕi like the “Heitler–London type” zeroth-order wave function
which one obtains by using the unperturbed orbitals of two interacting
monomers:

| $ $ $ $ $ | .Φ〉 = 〉+ + +
+

+
+

+ϕ ϕ ϕ ϕ ϕ1 2 1 0K KN N N NA A A B
(18)

The energy E corresponding to this wave function is defined by the expec-
tation value

E
H= 〈 〉

〈 〉
Φ Φ

Φ Φ
| $ |

|
. (19)

Direct calculation of the integrals 〈 〉Φ Φ| $ |H , 〈 〉Φ Φ| occurring in this expres-
sion is troublesome due to the overlap of the orbitals; instead one intro-
duces any set of orthonormalized orbitals spanning the same subspace as
the occupied non-orthogonal orbitals ϕi, e.g. the Löwdin-orthogonalized
ones

ψ ϕj ij i
i

S= −∑ 1 2/ (20)

where Sij
−1 2/ is a shorthand for the elements of the matrix S–1/2, and calcu-

lates the same energy E which is defined in Eq. (19) by using these ortho-
normalized orbitals and Slater rules:

E
Z Z

R
ha b

aba b
i i

i
i j

i j
i j= + 〈 〉 +

<
∑ ∑ ∑ψ ψ ψ ψ ψ ψ| $| [ || ]

,

1
2 (21)

where the “double bars”, as usual, indicate the difference

[ || ] [ | ] [ | ] .ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψi j i j i j i j i j j i= − (22)

We recall that Eq. (21) is written down in terms of spin-orbitals.
Now, pairs of Sij

−1 2/ matrix elements can be combined to give one matrix
element of matrix S–1, which leads to the appearance of the biorthogonal
orbitals; we write down explicitly the one-electron term:
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〈 〉 = 〈 〉 =∑ ∑ ∑∑ − − −ψ ψ ϕ ϕi i
i

ji j
j

ki k
ki

kih S h S S| $| | $|/ / /1 2 1 2 1 2 1 2

1

S h

S h

ij j k
i j k

kj j k
j k

k

−

−

〈 〉

= 〈 〉 = 〈

∑

∑

/

, ,

,

| $|

| $| ~ |

ϕ ϕ

ϕ ϕ ϕ $| .h k
k

ϕ 〉∑
(23)

Proceeding analogously also with the two-electron part, we arrive at

E
Z Z

R
ha b

aba b
i i

i
i j

i j
i j= + 〈 〉 +

<
∑ ∑ ∑~ | $| [~ ~ || ] .

,

ϕ ϕ ϕ ϕ ϕ ϕ1
2 (24)

If we define the determinant wave function |
~Φ〉 built up of the biortho-

gonal orbitals ~ϕ i , then we have the equality (as 〈 〉~
|Φ Φ = 1)

E
H H= 〈 〉

〈 〉
= 〈 〉

〈 〉
Φ Φ

Φ Φ
Φ Φ

Φ Φ
| $ |

|

~
| $ |
~

|
. (25)

It is to be stressed that this equality between expectation and “bi-expectation”
values holds only due to the fact that no virtual orbitals were considered
when forming the matrix S–1/2. In the general case, Eq. (25) represents only
an approximation, which deteriorates with the the increase of the overlap
of the occupied orbitals of one monomer with the virtual orbitals of an-
other one.

INTERRELATION BETWEEN THE a priori CHA AND a posteriori CP SCHEMES OF
BSSE CORRECTION: A BIORTHOGONAL ANALYSIS

As noted in Introduction, the a priori CHA and a posteriori CP schemes of
BSSE correction usually give surprisingly close numerical results, and their
agreement improves as the basis sets improve. A qualitative discussion of
this phenomenon has been given by using a very simple model in which
different perturbations of an unperturbed Hermitian operator were ana-
lyzed9. However, Hermiticity means orthogonality of the unperturbed basis
functions, while the natural basis for studying intermolecular interactions
consists of the antisymmetrized pairs of wave functions describing different
states of the free monomers (including electron transfer states); owing to
intermolecular overlap, these functions form a non-orthogonal many-electron
basis. For that reason we are going to extend the analysis given in9 to the
case when the problem is treated in the framework of biorthogonal general-
izations of the Rayleigh–Schrödinger perturbation theory (PT) and of the
Hylleraas functional. (The necessary formalism is developed in Appendices.)
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The Additivity Assumption of the CP Scheme

The problem of the relations between the CHA and CP schemes is directly
related to the implicit additivity assumption inherent in the CP scheme.
That additivity assumption can be best seen if one does not restrict the con-
sideration to a single geometric arrangement of the interacting molecules,
but constructs their potential energy surface (PES). The sum of the free
monomer energies EA + EB fixes the value of the PES at the infinite distance,
so the CP-corrected interaction energy (Eq. (2) defines in a natural manner
also the CP-corrected total energy6:

E E E EAB
CP

AB
CP

A BA B= + +∆ ( ) ( ) . (26)

Substituting here Eq. (2) and regrouping the terms, we get

E E E E E EAB
CP

AB A A B BAB A AB B AB= + − + −( ) [ ( ) ( )] [ ( ) ( )] . (27)

Here the total energy is subjected to a correction by using the results of the
“ghost orbitals” calculations. Although the difference between using Eq. (2)
and Eq. (27) may appear immaterial when a single point is considered,
there are different theoretical arguments in favor of using Eq. (27) as the
basic entity6,9.

The same logic can be applied to Eq. (3) with no difficulties. Instead of
the BSSE-corrected interaction energy pertinent to the monomer geometries
in the complex, we may collect the “ghost-orbitals” energy lowerings corre-
sponding to the same geometries; the terms with the unrelaxed monomer
energies EA

0 A( ), EB
0 B( ) cancel with the energy in the infinity. Thus we get for

the CP-corrected total energy with relaxed monomers the formula with ex-
actly the same structure as that of Eq. (27):

E E E E E EAB
CP

AB A
R

A
R

B
R

B
RAB A AB B AB= + − + −( ) [ ( ) ( )] [ ( ) ( )] (28)

which is in full agreement with the notion that BSSE is related to the
monomers within the complex.

Equations (27) and (28) mean that we transform the energy lowerings ob-
tained in the “ghost orbitals” calculations to the exactly the same energy
increase in the complex total energy. That is the equivalent of stating that
the BSSE which is present in the uncorrected energy of the complex is just
equal to the sum of energy lowerings obtained in the “ghost orbitals” calcu-
lations. This means that BSSE and the true interactions are considered addi-
tive. This very strong additivity assumption requires some justification.
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The existence of such an additivity is by far not trivial. The energy cor-
rections of the CP scheme (energy lowerings in the ghosts orbitals calcula-
tions) are governed by the matrix elements of the BSSE operator only. At
the same time, in the supermolecule the excitation from the ground state
to each excited state is caused, in general, by the sum of the matrix ele-
ments of BSSE and of the true physical interaction. It is easy to see that
such a sum leads to additive first-order wave functions in a perturbational
approach, but to non-additive energy corrections; there will be interfer-
ences (cross-terms between these matrix elements) spoiling additivity19.

Therefore, the evident success of the CP scheme requires some refined
discussion, superseding that in19. It is easy to see that the CP scheme can be
considered a conceptually correct approach if (and only if) one can show
that there is a “true” (or “best”) BSSE-free energy which differs from the un-
corrected one by terms expressed in the matrix elements of the BSSE opera-
tor only; that difference is determined (or, at least, approximated) by the
“ghost orbitals” calculations. Such an improved energy value is indeed
available – it is provided by the CHA/CE scheme.

Thus, in order to give support to the CP method, one has to show that
the deviation of the uncorrected energy from the “best” (CHA/CE) energy
value can be expressed by the matrix elements of the BSSE-operator only.

The CHA/CE Scheme Justifying the Additivity Assumption of CP

The key point is that for systems exhibiting BSSE, the correct energy must
not be calculated by considering the net effect of the pure interactions
only. That has been known since the early days of symmetry adapted per-
turbation theory, when calculating the first-order energy in the standard
manner as the expectation value of the “true” intermolecular perturbation
(i.e., electrostatic interactions of the electrons and nuclei of one molecule
with those of the other one) over the unperturbed wave functions led to
completely wrong results. That behaviour was directly associated with the
fact that the wave functions used for the monomers were not the exact so-
lutions of the individual monomer problems. (If the monomer wave func-
tions were exact, no BSSE problem existed, of course, either.) Then the
situation was corrected by introducing the so called Murrell corrections20,
which means that one has to calculate explicitly the expectation value of
the total intermolecular Hamiltonian if approximate monomer functions
are used, and not only the expectation value of the pure perturbation. In
terms of operators introduced in3 this means that one has to calculate the
expectation value of the sum of the “pure” intermolecular interactions and
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of BSSE – that is inevitable to account properly for the “overlap repulsion
of closed shells”. The same holds if one approaches the non-orthogonality
by using biorthogonal theory: the results in21 are very instructive both in
the sense that for a moderate basis biorthogonal PT may be quite accurate
if used with the total Hamiltonian, and that the use of the pure perturba-
tion alone in estimating energy leads to complete failure. (It can be easily
verified that the difference between Eq. (5) in21 used in the successful
Method II and Eq. (4) there, defining the failing Method I, can be expressed
as the “bi-expectation” value of operator $B discussed below.) In full accord
with these considerations, in the CHA/CE method of a priori BSSE correc-
tion, only the wave function is determined by using the non-Hermitian
BSSE-free CHA Hamiltonian, but the energy corresponding to that wave
function is calculated as an expectation or “bi-expectation” value with the
conventional Hermitian Hamiltonian of the system6,22.

Thus we are going to compare the results of two biorthogonal perturba-
tion treatments. In one of them, giving BSSE-uncorrected results, all the
quantities are calculated by using the total perturbation

$ $ $V W B= + (29)

where $W describes the true interactions and $B the BSSE effects. In another
one (CHA/CE) the wave function corrections are calculated by using only
the interaction operator $W, but the energy is calculated as the “bi-
expectation” value of the total Hamiltonian $ $W B+ . The first-order energy
corrections coincide in the two cases, because they in both cases require
calculating the “bi-expectation” value of the total Hamiltonian over the
unperturbed wave function.

Turning to the second order, for the uncorrected result we have, accord-
ing to Eqs (60) of Appendix I:

E VR V W B R Wuncorr
2 = −〈 〉 = −〈 + +~

| $~$ $ |
~

|( $ $)
~$

( $ $Ψ Ψ Ψ0
0

0 0
0 B

WR W WR B

)|
~

| $ ~$ $ |
~

| $ ~$ $|
~

| $

Ψ

Ψ Ψ Ψ Ψ Ψ

0

0
0

0 0
0

0 0

〉

= −〈 〉 − 〈 〉 − 〈 BR W BR B
~$ $ |

~
| $~$ $|0

0 0
0

0Ψ Ψ Ψ〉 − 〈 〉
(30)

where operator
~$
R 0 is the biorthogonal reduced resolvent.

To get the second-order energy correction in the CHA/CE case, we have
to substitute the Hamiltonian (29) into the biorthogonal Hylleraas func-
tional (76) of Appendix II:
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E W B R W WR W BCHA/CE
2 = −〈 + 〉 − 〈 +~

|( $ $)
~$ $ |

~
| $ ~

( $ $)Ψ Ψ Ψ0
0

0 0
0 |

~
| $ ~ $ |

~
| $ ~$ $ |

~
| $~$

Ψ Ψ Ψ

Ψ Ψ Ψ

0 0
0

0

0
0

0 0

〉 + 〈 〉

= −〈 〉 − 〈

WR W

WR W BR W WR B0
0 0

0
0

$ |
~

| $ ~$ $| .Ψ Ψ Ψ〉 − 〈 〉 (31)

For the difference we get simply

E E BR Buncorr
2

CHA/CE
2− = −〈 〉~

| $~$ $|Ψ Ψ0
0

0 (32)

which, indeed, depends on the BSSE operator $B only, but not on the opera-
tor $W of true interactions, thus justifying the additivity assumption inher-
ent in the CP scheme. This is because the cross-terms between operators $W
and $B discussed above (and actually contained in the uncorrected energy
Euncorr

2 ) are also present in the “best” CHA/CE energy because of using the
total Hamiltonian for energy calculations in the latter.

The CP calculations permit to account for the main BSSE effects, but in
practice the corrections they give do not exactly reproduce the difference
between the uncorrected and CHA/CE results. This is explained partly by
the fact that our considerations have been pertinent to an approximate the-
ory only – even if BSSE can be assumed to be a basically second-order effect.
It is probably more important that the CP calculations are not done under
exactly the same conditions as the uncorrected and the CHA/CE ones: the
BSSE is estimated in “ghost orbitals” calculations which are done separately
for the individual monomers, and not as a procedure of estimating BSSE
within the supermolecule. (We do not wish to enter here into the old po-
lemics whether inclusion of the “ghost orbitals” occupied in the partner
molecule causes an overcorrection; we think “yes”, but that may appear
just useful for compensating some basis set deficiencies – cf. also ref.8 where
this problem was analyzed on a detailed analytical model.) Nonetheless, we
think that the present considerations help to understand the nearly quanti-
tative agreement between the CP and CHA methods usually observed.

CONCLUSIONS

Some results of mathematical character concerning the theory of inter-
molecular interactions and the BSSE problem have been presented:

– It is shown that the concept of complete basis set may be introduced for
intermolecular potential surfaces only by considering explicitly the limiting
process in which the basis sets of both monomers approach completeness
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simultaneously. That does not lead to any overcompleteness problem if we
do not postulate the existence of two complete basis sets from the outset.

– The intimate connection between the BSSE and the differences of some
biorthogonal integrals and their “original” counterparts is also discussed.
The operator of BSSE is given in terms of such differences.

– It is shown that in a special case when only the overlap of the occupied
orbitals is considered, the “bi-expectation” value of the energy coincides
with the conventional expectation value for the single determinant wave
function built up of the unperturbed orbitals of the individual monomers.

– It is discussed, by using a model of a biorthogonal perturbation theory,
why the conceptually fully different a priori (CHA) and a posteriori (CP)
schemes of BSSE correction usually give very close numerical results. (The
necessary biorthogonal perturbation formalism is developed in Appen-
dices.) The results give justification for the additivity assumptions inherent
in the CP method.

APPENDIX I.

BIORTHOGONAL PERTURBATION THEORY USING REDUCED RESOLVENT

If the unperturbed Hamiltonian is non-Hermitian, one has to replace the
standard Rayleigh–Schrödinger PT with its biorthogonal counterpart. Al-
though low-order biorthogonal theory has been used in several papers (e.g.,
refs4,5,23) and some general formulae were also given in the Appendix of
ref.21, it may be worthwhile to develop here a complete biorthogonal gener-
alization of the reduced resolvent formalism applied to the Rayleigh–
Schrödinger PT.

Thus, let us consider the perturbed problem

$ | |H EΨ Ψ〉 = 〉 (33)

where

$ $ $H H V= +0 λ (34)

and neither the unperturbed Hamiltonian $H 0 nor the perturbation $V are as-
sumed Hermitian. λ is the usual perturbation parameter, the powers of
which are used to systematize the terms of the different expansions. It is as-
sumed that we have a full set of left and right eigenvectors of $H 0 :

$ | | ;
~

| $ ~
| .*H E H Ei i i j j j

0 0 0 0 0 0 0 0Ψ Ψ Ψ Ψ〉 = 〉 〈 = 〈 (35)
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It is known that the left and right eigenvectors of an operator form biortho-
gonal sets; one can choose their normalization as to provide them to be bi-
orthonormal:

〈 〉 =~
| .Ψ Ψj i ij

0 0 δ (36)

If one introduces the overlap matrix S with the elements Ski = 〈 〉Ψ Ψk i
0 0| ,

and its inverse S–1 having the elements (in a short-hand notation) S Ski ik
− −=1 1* ,

then Eq. (36) is obviously equivalent to the explicit definitions

〈 = 〈 〉 = 〉− −∑ ∑~
| | ; |

~
| .Ψ Ψ Ψ Ψj jk

k
k j kj

k
kS S0 1 0 0 1 0 (37)

Owing to the biorthonormal property (36) of the left and right eigen-
vectors, one can construct a resolution of identity by their use:

|
~

| .Ψ Ψi i
i

0 0 1〉〈 =∑ (38)

This is closely connected with the fact that if we have any linear combina-
tion

| |Ψ Ψ〉 = 〉∑Ci
i

i
0 (39)

then, by virtue of (36), an actual coefficient Cj can be obtained by multiply-
ing with 〈 ~

|Ψ j
0 :

〈 〉 = 〈 〉 = =∑ ∑~
|

~
| .Ψ Ψ Ψ Ψj i j

i
i i ij

i
jC C C0 0 0 δ (40)

The Reduced Resolvent of Biorthogonal Formalism

Let us be interested in the perturbation of the non-degenerate state i = 0
with a real unperturbed energy E0

0 . Then using (36) we may introduce the
“cut-off” operators

~$
P and

~$
Q, such as

~$ ~$
P Q+ = 1 (41)

where
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~$ ~
| ;

~$ ~$ ~
| .P | Q P | i i

i

= 〉〈 = − = 〉〈
=
∑Ψ Ψ Ψ Ψ0

0
0
0 0 0

1

1 (42)

Using Eq. (36) one can write the biorthogonal “spectral resolution′′ of the
operator $H E0

0
0− (more rigorously, of the operator $ $H Ei

0 0 1− ) as

$ ( )
~

| .H E E E |i i i
i

0
0
0 0

0
0 0 0− = − 〉〈∑ Ψ Ψ (43)

We can also define operator
~$
R 0 via its spectral resolution:

~$ ~
| .R

E E
|

kk
k k

0

0
0
0

1

0 01=
−

〉〈
=
∑ Ψ Ψ (44)

As the summation runs from 1, and not 0, it is guaranteed that the denomi-
nator does not become zero. (E0

0 has been assumed to be non-degenerate.) It
is easy to see that this operator is a direct biorthogonal generalization of
the standard reduced resolvent14, and has the property

( $ )
~$ ~$

H E R Q0
0
0 0− = (45)

analogous to that for the “ordinary” reduced resolvent.

Corrections of the Wave Function

If one substitutes the perturbational expansions of the wave function and
of the energy, the Schrödinger equation becomes

( $ $) | ( ) ( )H V E Ej j

j

k

k

k0
0
0

1
0
0

1

+ 〉 + 〉








 = +

=

∞

=

∞

∑ ∑λ λ λ|Ψ Ψ 





〉 + 〉



=

∞

∑| | .( )Ψ Ψ0
0

1

λ l l

l

(46)

For sake of simplicity we do not indicate explicitly that the wave function
corrections | ( )Ψ j 〉 and the energy corrections E(k) are pertinent to the state
with number 0 we are considering.

We introduce the biorthogonal version of the intermediate normalization

〈 〉 = 〈 〉 = ≥~
| ;

~
| ( )( )Ψ Ψ Ψ Ψ0

0
0
0

0
01 0 1j j (47)

for the fulfilment of which it is sufficient to require that the expansions of
the wave function corrections | ( )Ψ j 〉 do not contain the unperturbed wave
function |Ψ0

0 〉.
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|Ψ0
0 〉 is a solution of the unperturbed problem with a real eigenvalue, i.e.,

$ | |H E0
0
0

0
0

0
0Ψ Ψ〉 = 〉 ; 〈 = 〈~

| $ ~
|Ψ Ψ0

0 0
0
0

0
0H E . The intermediate normalization (47)

leads, therefore, to the equalities

〈 〉 = 〈 〉 = ≥~
| $ | ;

~
| $ | ( ) .( )Ψ Ψ Ψ Ψ0

0 0
0
0

0
0

0
0 0 0 1H E H jj (48)

We regroup the terms of Eq. (46) as

( $ ) | | $( ) (H E V Ej j

j

k

k

k0
0
0

0
0

1 1

− 〉 + 〉








 = − +

=

∞

=

∞

∑ ∑Ψ Ψλ λ λ ) ( )| | .






〉 + 〉



=

∞

∑Ψ Ψ0
0

1

λ l l

l

(49)

Now we apply operator
~$
R 0 to both sides of (49), utilizing the relationship

(45) as well as the facts that ( $ )|H E0
0
0

0
0 0− 〉 =Ψ ,

~$
|R 0

0
0 0Ψ 〉 = and $ | ( )Q jΨ 〉 =

| ( )Ψ j 〉 for any j ≥ 1, which follow from (45), and the intermediate normal-
ization applied. We obtain, changing some summation indices:

λ λ λj j

j

j

j

jR V R V|
~$ $ |

~$ $ |( )Ψ Ψ Ψ
=

∞

=

∞
−∑ ∑〉 = − 〉 − 〉 +

1

0
0
0

2

0 1( ) λ j k j k

k

j

j

E R( ) ~$ | .0

1

1

2

Ψ ( )−

=

−

=

∞

〉∑∑ (50)

We should request the coefficients at the different powers of λ to be equal
on both the sides. Thus we get

|
~$ $ |( )Ψ Ψ1 0

0
0〉 = − 〉R V (51)

and

|
~$ $ |

~$
|( ) ( ) ( )Ψ Ψ Ψj j k j k

k

j

R V E R〉 = − 〉 + 〉− −

=

−

∑0 1 0

1

1
( ) (52)

for the first power of λ and for λj (j ≥ 2), respectively.
Substituting here the definition (44) of the biorthogonal reduced re-

solvent, we obtain the explicit expressions for the coefficients c p
j( ) in the ex-

pansions of the different wave function corrections | ( )Ψ j 〉 in terms of the
unperturbed functions, | ( ) ( )Ψ Ψj

p
j

p
p

c |〉 = 〉
=

∑ 0

1

:

|
~$ $ |

|
~

| $ |
( )Ψ Ψ

Ψ Ψ Ψ
1 0

0
0

0 0
0
0

0
0
0

1

〉 = − 〉 = −
〉〈 〉

−=
∑R V

V

E E
j j

jj

=
−

−
〉

=
∑

$
|

V

E E
j

j

j
j

0

0
0
0

0

1

Ψ (53)

and

|
~( ) ( ) ( ) ( )Ψ Ψj

p

jp
pl l

j k
p

j k

k

|
E E

V c E c〉 = 〉
−

− +
=

− −

=
∑ 0

0
0
0

1

11

1

1

1

j

l

−

=
∑∑









 (54)
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where the “mixed′′ matrix element
~
Vjk of the perturbation operator $V has

been introduced:

~ ~
| $ | .V V S Vjk j k ji ik

i

= 〈 〉 ≡ −∑Ψ Ψ0 0 1 (55)

The Energy Corrections

We multiply (46) by 〈 ~
|Ψ0

0 , taking into account the intermediate normaliza-
tion, change the summation index and get

λ λ λ〈 〉 + 〈 〉 =
=

∞
−

=

∞

∑ ∑~
| $ |

~
| $ | .( )Ψ Ψ Ψ Ψ0

0
0
0

2
0
0 1

1

V V Ek

k

k k

k

k (56)

Requesting the equal coefficients at the different powers of λ on the two
sides, we get for λ1

E V V( ) ~
| $ |

~1
0
0

0
0

00= 〈 〉 =Ψ Ψ (57)

and for λk (k ≥ 2)

E Vk k( ) ( )~
| $ | .= 〈 〉−Ψ Ψ0

0 1 (58)

By substituting here the expansion of | ( )Ψ k − 〉1 in terms of the zero-order
functions, this can be expressed as

E V c c Vk
p
k

p
p p

k

p
p

( ) ( ) ( )~
| $ |

~
.= 〈 〉 =−

=

−

=
∑ ∑Ψ Ψ0

0 1

1

0 1

1
0 (59)

It may be worthwhile to write down explicitly also the second-order
energy correction

E VR V
V V

E E
i i

ii

( ) ~
| $~$ $ |

~ ~
.2

0
0

0
0 0

0
0
0

1

= −〈 〉 = −
−=

∑Ψ Ψ (60)

As
~ ~*V Vi i0 0≠ , this quantity is not necessarily real in the most general case.

APPENDIX II.

BIORTHOGONAL HYLLERAAS FUNCTIONAL

Let us consider a perturbation problem with the non-Hermitian Hamil-
tonian $ $ $H H V= +0 λ and |Ψ0〉 as the eigenfunction of the unperturbed prob-

Collect. Czech. Chem. Commun. 2008, Vol. 73, No. 11, pp. 1391–1414

Theory of Intermolecular Interactions 1411



lem $H 0 |Ψ0〉 = E0|Ψ0〉 , and assume that we have some wave function |Ψ〉 =
|Ψ0〉 + λ|χ〉 , where |χ〉 may or may not be equal to the first-order wave func-
tion derived above. We assume that this function satisfies the biorthogonal
intermediate normalization, i.e.,

〈 〉 = 〈 〉 =~
| ;

~
| .Ψ Ψ Ψ0 0 01 0χ (61)

We form the “bi-expectation” value

~
~ ~| $ $ |

~ ~|
E

H V
=

〈 + + + 〉
〈 + + 〉

Ψ Ψ
Ψ Ψ

0
0

0

0 0

λχ λ λχ
λχ λχ

(62)

and expand it up to the terms of second order (inclusively) in λ. The defini-
tion of the biorthogonal counterpart |~χ〉 of the wave function |χ〉 will be dis-
cussed later, here we only request that it also should correspond to the
intermediate normalization in the sense

〈 〉 =~| .χ Ψ0 0 (63)

The expansion of (62) can be done exactly as in the case of the conven-
tional Hylleraas functional (e.g., ref.14); one obtains

~ ~ ~
( )( )E E E J= + + +0

1 2
2

3λ λ λO (64)

where

~ ~
| $ |( )E V1

0 0= 〈 〉Ψ Ψ (65)

is the biorthogonal first-order energy correction (see above) and the bi-
orthogonal Hylleraas functional

~
J 2 differs from the conventional one only

by the appearance of the biorthogonal “bra-vectors” and biorthogonal first-
order energy:

~ ~
| $ ~

| ~| $ ~
| ~| $ |( ) ( )J V E V E H E2 0

1 1
0

0 0= 〈 − 〉 + 〈 − 〉 + 〈 −Ψ Ψχ χ χ χ〉 . (66)

To obtain this form, it is sufficient to assume the fulfilment of
〈 〉 =~

|Ψ Ψ0 0 1; if the biorthogonality assumptions 〈 〉 =~
|Ψ0 0χ and 〈 〉 =~|χ Ψ0 0

of the intermediate normalization is also utilized, one gets

~ ~
| $ | ~| $ | ~| $ | .J V V H E2 0 0

0 0= 〈 〉 + 〈 〉 + 〈 − 〉Ψ Ψχ χ χ χ (67)
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Now, let us assume that the wave function |χ〉 has been obtained as the
first-order wave function, corresponding to the same $H 0 as considered
above, but for the perturbation $W which may be different from $V. Then
we have, in accord with (53) applied to operator $W (instead of $V):

|
~$ $ | .χ〉 = − 〉R W0

0Ψ (68)

Substituting this into Eq. (67), we get

~ ~
| $~$ $ | ~| $ | ~|( $ )

~$
J VR W V H E R2 0

0
0 0

0 0 0= −〈 〉 + 〈 〉 − 〈 −Ψ Ψ Ψχ χ $ | .W Ψ0 〉 (69)

The last term of this equality can be transformed by using the property of
Eq. (45) of the reduced resolvent and the equalities

~$
|

~
|Q = − 〉〈1 0 0Ψ Ψ and

〈 〉 =~|χ Ψ0 0 as

〈 − 〉 = 〈 − 〉〈 〉 = 〈~|( $ )
~$ $ | ~|(

~
|) $ | ~χ χ χH E R W | W0 0 0

0 0 0 01Ψ Ψ Ψ Ψ | $ | .W Ψ0 〉 (70)

Substituting this result, we get

~ ~
| $~$ $ | ~| $ $ | .J VR W V W2 0

0
0 0= −〈 〉 + 〈 − 〉Ψ Ψ Ψχ (71)

If $W = $V, then the second term on the right-hand side of Eq. (71)
vanishes, and one recovers the second-order biorthogonal energy cor-
rection, Eq. (60), as expected – without even specifying the actual form of
the biorthogonal function 〈~|χ .

In the general case, when $W ≠ $V, equality (68) gives the first-order wave
function correction obtained for the Schrödinger equation ( $ $ )H W0 + =λ
E〈Ψ| . That Schrödinger equation for the right eigenvectors has a counter-
part for the left eigenvectors:

〈 + = 〈Ψ Ψ|( $ $ ) |H W E0 λ (72)

(E has been assumed real.) Using 〈 ~
|Ψ0 (left eigenvector of $H 0 ) as the zeroth-

order wave function, and turning to the right-hand side eigenvector prob-
lem for the adjoint operators, we get the biorthogonal counterpart of the
Schrödinger equation as:

( $ $ )(|
~

|~ ) (
~

)(|
~

|~ )† †H W E E0
0 0 1 0+ 〉 + 〉 = + 〉 + 〉λ λ χ λ λ χΨ ΨK K K . (73)
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Considerations quite similar to those discussed in detail above give for the
first-order wave function correction |~χ〉 the expression

|~
~$ $ |

~
.† †χ〉 = − 〉R W0

0Ψ (74)

Thus we have to substitute into Eq. (71) the biorthogonal function 〈~|χ as

〈 = −〈~|
~

| $ ~$
.χ Ψ0

0WR (75)

Thus finally we get

~ ~
| $~$ $ |

~
| $ ~$ $ |

~
| $ ~$

J VR W WR V W2 0
0

0 0
0

0 0= −〈 〉 − 〈 〉 + 〈Ψ Ψ Ψ Ψ Ψ R W0
0

$ | .Ψ 〉 (76)

Again, we recover the second-order energy Eq. (60) if $W = $V.
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